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ABSTRACT ARTICLE HISTORY
There is a growing interest in developing agricultural practices that can Received13 March 2023
improve crop performance while preserving natural resources. Plant biosti- Accepted30 October2023

mulants are thought to play a role in reaching this goal, in particular by
increasing the nitrogen use efficiency. However, a notable research gap
exists concerning the effects of foliar applications of natural zeolites as ; .

L . aminopeptidaseroot

plant biostimulants on crop performance. To address this knowledge gap, biomass; Triticum aestivum
a greenhouse experiment was set up in order to study the response of L.; Zea mays L
maize and wheat traits, specifically the biomass productivity and nitrogen
uptake, as well as the response of soil extracellular enzymes to the foliar
applications of a natural zeolite in combination with different levels of
nitrogen fertilization, that is, 100%, 75%, and 50% of the optimal dose.
Foliar application of zeolite in wheat and maize plants led to an increase
in root nitrogen concentration of about 10%, particularly at the lowest
nitrogen fertilization rate. This response was accompanied by an increase
in aboveground to belowground uptake nitrogen ratio. Furthermore, there
was a significant reduction of about 20% in root biomass in both crops
with zeolite application across the entire nitrogen fertilization gradient.
These plant-level responses were associated with a significant increase in
the activity of carbon-degrading and nitrogen-degrading enzymes at the
soil level in response to zeolite applications. Our findings provide a com-
pelling proof-of-concept for the beneficial effects of foliar-applied zeolite
as a biostimulant for crops, emphasizing the critical need for additional
field research to validate our greenhouse results.
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Beta-glucosidasejeucine-

Introduction

Meeting the demands of a rapidly expanding world population and minimizing the environmen-
tal consequences of agronomic practices pose significant challenges for modern agriculture (Clark
and Tilman 2017; Lynch et al. 2021). Plant biostimulants (PBs) have been identified as important
components in promoting sustainable agriculture (Cataldo et al. 2021). Indeed, PBs are defined as
substances, mixtures or microorganisms that are capable of enhancing nutrient use efficiency, abi-
otic stress tolerance and/or crop traits (Rouphael and Colla 2020; Del Buono 2021; Du Jardin
2015) and can be classified into six categories, that is, humic and fulvic acids, protein
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hydrolysates, seaweed and other plant extracts, chitosan, beneficial fungi and bacteria, as well as
inorganic compounds (Du Jardin 2015; Yakhin et al. 2016).

While the mode of actions of different PBs are yet to be fully understood (Yakhin et al. 2017),
recent application of plant phenomics combined with metabolomics seems promising to elucidate
how different PBs can promote plant growth (Nephali et al. 2020; Li et al. 2022; Zhang et al.
2023). PBs action should translate into economic and environmental advantages such as higher
crop yield, increased crop quality, reduced fertilization rate, and/or higher stress tolerance. Recent
meta-analyses have shown that PBs can enhance crop yield (Li, van Gerrewey, and Geelen 2022)
and nutrient use efficiency (Herrmann et al. 2022) depending on type of biostimulant, application
mode, crop species and environmental conditions.

The PBs category of inorganic compounds includes essential elements or inorganic salts such
as, for example, silicates, phosphites, and carbonates. Siliceous natural nanomaterials such as zeo-
lites can potentially be included in this category of inorganic PBs (Constantinescu-Aruxandei
et al. 2020; Mondal et al. 2021). Natural zeolites are nanoporous, crystalline, hydrated aluminosili-
cates of alkali and alkaline earth cations that are characterized by reversible dehydration, large
volume of free space, and high cation exchange capacity (Mumpton 1999). When applied as soil
amendment, recent studies have shown that natural zeolites can affect soil microbial structure
(Ferretti et al. 2018), reduce nitrogen losses (Ruser and Schulz 2015; Faccini et al. 2018; Akbari
et al. 2021; Roumani and Olfs 2021) and increase plant nutrient use efficiency (de Campos
Bernardi et al. 2016; Mehrab et al. 2016; Medoro et al. 2022). Interestingly, zeolite addition to
agricultural soils has been linked to changes in extracellular enzyme activities so suggesting that
zeolite can also affect microbial activity and, ultimately, nutrient cycling (Garau et al. 2007;
Gondek et al. 2023; Khati et al. 2017; Tzanakakis et al. 2021). However, studies that test natural
zeolites as PBs for plant nutrition via foliar application are limited (e.g. El-Gabiery and Ata Allah
2017; Moale et al. 2021; Petoumenou 2023; Sirbu et al. 2023) and, to our knowledge, no study
has yet examined the effects of zeolite on crop nutrition (but see Sedaghat et al. 2022 as a strategy
against drought in wheat plants).

In order to understand the potentials of zeolites as biostimulant for crops, a greenhouse
experiment has been performed where maize and spring wheat plants were treated with a natural
zeolite via foliar application in combination with three levels of nitrogen (N) fertilization, that is,
100%, 75% and 50% of the recommended optimal dose. The tested zeolite as biostimulant
(Fertiroc®) is a combination of natural zeolite (chabazite) and natural soft calcium carbonate.
Our study aims to show the potential of zeolites as biostimulants in crop production by improv-
ing nutrient use and soil enzyme activity. Specifically, we want to answer the following questions:
(1) how does foliar-applied zeolite affect aboveground and belowground biomass as well as the
corresponding N uptake in maize and wheat plants? (2) Does soil activity of carbon, phosphorus,
and N-degrading enzymes respond to foliar application of zeolite? The overarching hypothesis of
this study is that, under reduced levels of N fertilization, the application of zeolite can not only
improve the N nutrition of the two crops, but also stimulate the activity of soil N-degrading
enzymes.

Material and methods
Experimental setup

A greenhouse experiment was conducted at the research station of the Swiss Institute for
Agricultural Research (Agroscope) in Changins, Switzerland (46°24’ N, 06°14’ E), from April to
June 2021. Spring wheat (Triticum aestivum L. cv. Diavel) and maize (Zea mays L. cv. LG31211)
plants were grown in two distinct greenhouse modules under the same conditions, that is, a light/
dark regime of 14/10h with supplemental lighting of 400W m™> at 22/15°C and relative
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humidity of 50%. Wheat and maize plants were grown in plastic pots of, respectively, 20 cm
(diameter) x 15cm (height) and 20 cm (diameter) x 25cm (height) containing 3kg of soil for
the wheat and 6kg of soil for the maize plants. All pots within each greenhouse module were
placed on tables and randomly reshuffled every week to avoid any potential effects of microcli-
matic gradients.

Five and three seeds of, respectively, wheat and maize were sown in each pot. After seed emer-
gence, maize plants were thinned to one plant per pot whereas five plants of wheat were left in
each pot. All the pots contained a loamy (338g kg™' sand, 425g kg™" silt and 237 g kg™" clay)
soil that was manually collected from the surface layer (0-15 cm) of an agricultural soil classified
as Calcaric Cambisol and situated close to the greenhouse. Before potting, the soil was air-dried,
ground, sieved through a 1-cm mesh and mixed thoroughly. The initial soil physico-chemical
properties were as follow: pH (1:2.5, H,0) of 7.9, total N content of 1.21g kg™, total organic C
content of 13.3g kg™, available P content of 0.14 g kg™', and available K content 0.29 g kg™'. All
plants received deionized water two or three times per week so to keep soil moisture content at
60-80% of field capacity throughout the experimental period. Both crop species were allowed to
grow for nine weeks. All pots received a basal fertilization treatment consisting of P (as KH,PO,)
and K (as KCI).

Nitrogen and zeolite treatments

Pots were arranged in a replicated and completely randomized design. Nitrogen fertilization was
applied at three different rates (= treatments), that is, the amount of 110 and 120kg N ha™! for
maize and wheat, respectively, in accordance with the official recommendations for optimal N
fertilization (Sinaj and Richner 2017), and two lower amounts of 60kg N ha™' and 90kg N ha™'
for both crops. Nitrogen was applied as ammonium nitrate in two dates for maize, that is, at V4
(4 leaf collars present) and V6 (six leaf collars present) growth stage, and in three dates for wheat,
that is, at Zadok’s growth scale of 16 (six unfolded leaves), 18 (eight unfolded leaves) and 19
(nine unfolded leaves) (Zadoks et al. 1974). In the case of maize, each of the two dates of N fertil-
ization provided half of the total optimal N dose. Similarly, in the case of wheat fertilization, each
of the three dates of N addition provided one-third of the total optimal N dose. The three N fer-
tilization treatments (hereafter N120/N110, N60, and N90kg ha~') were coupled with (+Z) or
without (0Z) foliar application of zeolite. Thereby, the overall experiment design resulted in six
treatments, that is, 3N levels x 2 zeolite levels. More specifically, the maize experiment consisted
of 24 experimental units (each pot containing one plant was one experimental unit). For each N
treatment (i.e. 110, 90 and 60kg ha™"), maize plants received two levels of foliar zeolite (addition
and no-addition, see below for the specific amount) with four replicates for each treatment. For
the wheat experiment, each experimental unit was represented by a pot containing five plants.
The N levels and the zeolite levels followed the same protocol as for the maize so yielding to 24
experimental units. All the treatments with the foliar zeolite were sprayed on the same days when
the N fertilization was applied (30, 36, and 42 days after sowing for the wheat, and 36 and 51 days
after sowing for the maize). The commercial product Fertiroc® was used as natural zeolite and
was sprayed over the plants with a pressurized portable sprayer of 1L. The Fertiroc® product is a
composition of natural zeolite (chabazite) mixed with a proportion of natural soft calcium car-
bonate. To be effective, the composition is micronized and works extremely fine according to the
know-how of the producer company Power the Nature SA (Lausanne, Switzerland and Paris,
France). For wheat, the proper amount of Fertiroc was prepared based on the sur-face that was
covered by 12 pots (ie. 1.2 m®) following the manufacturer’s recommendations of 10 L of
Fertiroc© ha™" in 600 1 of water. This resulted in the application of a solution of 72 mL of water
containing 1.2 mL of Fertiroc©. For the maize, the proper amount of zeolite for 24 pots was

prepared with the equivalent of 15 L of Fertiroc@© ha™' in 600 L resulting in a solution of
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72ml of water containing 1.8 mL of Fertiroc©. The controls of the zeolite treatment (0Z) were
sprayed with the same amount of deionized water on the same dates of foliar applications of
Fertiroc®.

Sampling and laboratory analyses of plant and soil samples

Wheat and maize plants were sampled after 9 weeks from the sowing in order to recover the
aboveground and belowground biomass (roots). The wheat plants were sampled at the dough
development stages (growth stage 85), that is, when spikes were already emerged and the shoots,
including the flag leaves, were yellow (Zadoks et al. 1974). On the other hand, maize plants were
sampled at the tasseling stage. For wheat, all the five plants in each pot were sampled together
and then separated into roots, aboveground biomass and spike biomass. Maize plants, one per
pot, were separated into aboveground (tassels were included) biomass and roots. Aboveground
biomass was cut at the soil level and roots were gently washed by hand over a sieve using tap
water to remove soil particles. All the separated parts were oven dried at 60 °C for 72 h.

After drying, the roots, the aboveground biomass and the spike biomass samples were ground
with a rotor mill to a fine powder (<2 mm). Total N content (%) was determined by Dumas dry
combustion. The N uptake in the aboveground as well as in the belowground biomass was calcu-
lated as: [N concentration (%) x dry weight (g plant_l)]. Upon harvest, composite soil samples
made of three soil cores (2.5cm diameter x 10cm depth) per pot were collected and thoroughly
mixed. Fresh subsamples were immediately frozen at —20 °C for soil enzyme analysis.

Soil extracellular enzymatic activity

The activities of five selected soil enzymes related to C-cycling, i.e. f-glucosidase (BG), f-xylosi-
dase (BX), to C and N-cycling, that is, f-N-acetylglucosaminidase (NAG), to N-cycling, that is,
leucine aminopeptidase (LAP), and to P-cycling, that is, acid phosphatase (AP), were measured
using synthetic fluorogenic substrates according to a modified procedure by (Marx et al. 2001;
German et al. 2011). Fluorogenic 4-methylumbelliferone (MUF)-based substrate was used to
determine the activities of BG, BX, NAG and AP (Sigma-Aldrich, St. Louis, MO). Fluorogenic 7-
amino-4-methylcoumarin (MUC)-based substrate was used to determine the activity of LAP
(Sigma-Aldrich, St. Louis, MO). The fluorescence was measured by a microplate reader (BioTek,
Instruments, US) with excitation wavelength of 355nm and emission wavelength of 460 nm. For
calibration and quenching effects, a set of standards were prepared with 200 uL of soil slurry solu-
tion (for each individual sample) with a range of increasing concentrations of MUF or MUC
standards. Enzyme activities were calculated from the regression slopes of the standard measure-
ments along with the fluorescence average values of the triplicates for each sample and they were
reported as pmol substrate (MUF or MUC) g~ dry soil h™".

Statistical analyses

Univariate and multivariate statistical analyses were performed using the software Statistica v.
13.5.1.17 (TIBCO Software). The experimental design had two factors, that is, N fertilization
(three levels) and zeolite biostimulant (two levels). For all studied variables, a two-way analysis of
variance (ANOVA) was used to test the effects of N fertilization, zeolite and their interaction. A
significant interaction indicates that the effect of zeolite depends on the level of N fertilization.
Within each level of N fertilization, the effect of zeolite application was tested by means of a ¢-
Student test. Finally, a principal component analysis (PCA) was applied to determine the correla-
tions and explore the variability between plant and soil parameters.
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Results
Effect of N fertilization and FertiRoc addition on aboveground biomass

In maize plants, on the basis of two-way ANOVA, a positive effect of N fertilization on above-
ground biomass and the correspondent N concentration was observed (Figure 1A, B). Instead,
the zeolite addition did not have any effect either on aboveground biomass or correspondent N
concentration, with the only exception of the lowest N fertilization treatment (N60) where the
application of zeolite significantly increased the N concentration in aboveground biomass (c.
+13%) compared to the no-zeolite treatment (Figure 1B).

In wheat plants, neither N fertilization nor zeolite application had a significant impact on
aboveground biomass (Figure 2A). Differently, N fertilization positively affected the N
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Figure 1. Mean (n =4) abovegroundbiomass (a), abovegroundbiomassN concentration(B), belowgroundbiomass (C), and
belowgroundbiomass N concentration(D) in maize plants under different N (N60, N90, and N110kg ha™") and zeolite
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concentration in aboveground biomass (Figure 2B). Zeolite application did not affect the N con-
centration in aboveground biomass of wheat, but it did lead to a significant increase (c. +19%) in
N concentration at the lowest N fertilization level compared to the no-zeolite treatment (Figure
2B). Regarding the spike biomass and N concentration in spikes (Figure 2C, D), N fertilization
had a significant effect, while zeolite application did not. Nevertheless, there was a trend toward
higher mean values of spike biomass with zeolite addition along the N gradient (Figure 2C).
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letters indicatesignificantdifferences(p < 0.05) betweenN fertilizationtreatmentsfor the same zeolitetreatment(uppercase=
0Z, lowercase= +Z) based on one-way ANOVA and post-hocFisher LSD test. The asterisksindicatea significantdifference
(p < 0.05) betweenzeolitetreatmentsfor the same N fertilizationlevel based on t-Studenttest.
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Table 1. Effect of nitrogen (N) fertilization and zeolite (Z) addition on mean activity of C, N, and P-targeting enzymes in maize
and wheat soil.

. Zeolite treatment Statistical analysis
Enzyme activity

Soil (umol MUF or MUC g~ soil h™") 0z +Z Z effect N effect ZxN interaction

Maize Acid phosphatase (AP) 10.72 6.6° Kk NS NS
B-glucosidase (BG) 39.4° 73.3° ok NS NS
B-xylosidase (BX) 1022 4.4° ok NS NS
N-acetylglucosaminidase (NAG) 9.3 3.9° kK NS NS
Leucine-aminopeptidase (LAP) 19.2° 34.3° HoAok NS NS

Wheat Acid phosphatase (AP) 18.9° 9.9° ok ok NS
B-glucosidase (BG) 30.2° 93.7¢ Hodok HoAok Hokok
B-xylosidase (BX) 6.9° 21.3° Kok NS NS
N-acetylglucosaminidase (NAG) 8.7° 55° Hok HoAok NS
Leucine aminopeptidase (LAP) 17.1° 36.8° ok NS NS

Note: Values are the average (n=12) across three N fertilization rates for the two zeolite treatments. The 0Z treatment indi-
cates no-zeolite addition (control), whereas + Z indicates zeolite addition according to manufacturing indications. The statis-
tical analysis, based on a two-way NOVA, shows the significance of zeolite and nitrogen effect as well as their interaction:
NS = no-significant (p >0.10), ¥ = p<0.10, ** = p <0.05, *** = p < 0.01. For each enzyme, the significance of the Fisher-
LSD post-doc comparison between zeolite treatments is indicated by different small case letters (p <0.05).

Effect of N fertilization and FertiRoc addition on belowground biomass

For what concerns the belowground biomass of both crops, N fertilization did not have a signifi-
cant impact on root productivity. However, there was a tendency for root biomass to decrease at
higher N fertilization rates, particularly in maize (Figures 1C and 2E). Conversely, the addition of
Fertiroc resulted in a significant decrease of root biomass for both crop species (Figures 1C and
2E) and an increase in root N concentration (Figures 1D and 2F) in all the N fertilization
treatments.

Effect of FertiRoc addition on N uptake

The aboveground to belowground N uptake ratio was positively affected by Fertiroc addition
for both crop species, particularly at lower N fertilization levels (Figure 3). Indeed, without
zeolite application the plants receiving a higher N fertilization were characterized by a
significantly higher aboveground to belowground N wuptake ratio. However, with zeolite
application no signifi-cative differences were observed in the N uptake ratio among the three
N fertilization levels (Figure 3). Notably at the lowest N fertilization levels (N60 for maize
and N60 and N90 for wheat), zeolite application resulted in a significant increase in the
aboveground to belowground N uptake ratio compared to the corresponding control (Figure 3).

Effect of FertiRoc addition on soil enzyme activity

The foliar application of Fertiroc was associated with a significant change in the activity of
soil enzymes in both maize and wheat soil. Specifically, the activity of f-glucosidase (BG) and
leu-cine-aminopeptidase (LAP) increased more than double, whereas the activity of acid
phosphatase (AP) and N-acetylglucosaminidase (NAG) decreased with the application of
zeolite (Table 1). Furthermore, the activity of f-xylosidase (BX) increased in wheat soil, but
decreased in maize soil upon zeolite application (Table 1).

Discussion

The observed higher aboveground biomass in response to N fertilization is in agreement with
previous studies reporting a positive effect of increasing N availability for maize and wheat prod-
uctivity (Miao et al. 2006; Morris et al. 2018; Struck et al. 2019; Ordonez et al. 2020).
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Interestingly, the application of Fertiroc in the lowest N fertilization treatment resulted in higher N
concentration in aboveground biomass for both crop species, suggesting that Fertiroc may, directly
or indirectly, enhance the N uptake under lower N availability.

Regarding the belowground productivity, previous studies have demonstrated that plants tend
to allocate more dry matter to belowground biomass in order to acquire more nutrients when
faced with lower N availability (Chen et al. 2015; Liu et al. 2017; Duncan et al. 2018; Ordonez
et al. 2020; Kubar et al. 2022). This explains the observed increase in root biomass in response to
decreasing N fertilization, a response particularly pronounced in maize. At the same time, the
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observed decrease of root biomass with Fertiroc application may, indeed, reflect an increase of N
availability, so resulting in less investment in root growth (Figures 1D and 2F). Despite the
decrease in root biomass, the data indicate that Fertiroc application was associated with an improve-
ment of the efficiency of N uptake, particularly under lower N fertilization where a higher N con-
centration in aboveground biomass was detected with Fertiroc application (Figures 1B and 2B).

The foliar application of Fertiroc led to a stabilization of the N uptake ratio across all the levels
of N fertilization, particularly at low N fertilization rates (Figure 3). This effect was observed in
both studied crops and was not evident in the absence of Fertiroc application. The direct and
indirect mechanisms of zeolite for promoting a better N uptake at lower N fertilization level are
still unclear and further studies are necessary. We can speculate that zeolite can either directly
affect N metabolism of the plant (Li et al. 2022; Savarese et al. 2022) or indirectly through plant-
soil microbial interactions (Pantigoso et al. 2022; Costa et al. 2023). For our study, we hypothe-
size that a role in the improvement of N uptake is also played by a change in soil enzyme activity
with Fertiroc application (Table 1). Specifically, higher activities of both fS-glucosidase (BG) and
leucine-aminopeptidase (LAP) were associated to higher aboveground to belowground N ratio
and lower root biomass in both crops (Figure 4). The increased LAP activity indicates an increase
in amino acid degradation and, consequently, more N available to the crops (Siwik-Ziomek and
Szczepanek 2019; Greenfield et al. 2021). In parallel, the increase in BG activity may reflect a
change in root exudate quality and quantity so to promote soil microbial activity (Sanaullah et al.
2016) and accelerate soil N cycling (Henneron et al. 2020). The observed decrease in NAG activ-
ity is consistent with previous findings on the response of this enzyme to increased N availability
(Olander and Vitousek 2000) and to changes in root exudate composition (Hao et al. 2022). The
decrease of AP activity may be attributed to an increased mobilization of inorganic phosphorus
resulting from the release of organic acids by plant roots (Zhang et al. 2019). Taken together, we
hypothesize that the observed changes in soil enzyme activities induced by the Fertiroc application
may reflect a functional response of the soil microbiome to changes in crop root exudates
(Sieradzki et al. 2023). This link between soil enzyme activity and soil microbiome composition
has been already reported in response to the addition of other types of PBs (Khati et al. 2017;
Barone et al. 2019; Mattarozzi et al. 2020; Trivedi et al. 2021).

In conclusion, this study demonstrates that foliar application of the Fertiroc® has
significant effects at both plant and soil level. For both maize and wheat, Fertiroc
addition reduced root bio-mass but increased root N concentration, especially at lower N
fertilization rates. Remarkably, Fertiroc addition maintained a consistent aboveground
to belowground N uptake ratio, even under reduced N input. At soil level, Fertiroc
addition increased the activity of f-glucosidase and leucine- aminopeptidase enzymes
potentially leading to increased N availability. This research provides a proof-of-
concept for the potential benefits of foliar application of zeolite as biostimulant for
crops. However, the complexity of the effects merits further in-depth investigation to fully
eluci-date the underlying mechanisms. This is particularly important if foliar application of
zeolite can be combined with strategies aiming at reducing N fertilization levels while
maintaining crop yield quality and quantity.
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