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Foliar applications of a zeolite-based biostimulant affect soil 
enzyme activity and N uptake in maize and wheat under 
different levels of nitrogen fertilization

Juan Carlos Quezadaa,b,c and Luca Bragazzaa 

aAgroscope, Field-Crop Systems and Plant Nutrition, Nyon, Switzerland; bAsian School of Environment, 
Nanyang Technological University, Singapore; cNestl�e Institute of Agricultural Sciences, Lausanne, Switzerland 

ABSTRACT 
There is a growing interest in developing agricultural practices that can 
improve crop performance while preserving natural resources. Plant biosti
mulants are thought to play a role in reaching this goal, in particular by 
increasing the nitrogen use efficiency. However, a notable research gap 
exists concerning the effects of foliar applications of natural zeolites as 
plant biostimulants on crop performance. To address this knowledge gap, 
a greenhouse experiment was set up in order to study the response of 
maize and wheat traits, specifically the biomass productivity and nitrogen 
uptake, as well as the response of soil extracellular enzymes to the foliar 
applications of a natural zeolite in combination with different levels of 
nitrogen fertilization, that is, 100%, 75%, and 50% of the optimal dose. 
Foliar application of zeolite in wheat and maize plants led to an increase 
in root nitrogen concentration of about 10%, particularly at the lowest 
nitrogen fertilization rate. This response was accompanied by an increase 
in aboveground to belowground uptake nitrogen ratio. Furthermore, there 
was a significant reduction of about 20% in root biomass in both crops 
with zeolite application across the entire nitrogen fertilization gradient. 
These plant-level responses were associated with a significant increase in 
the activity of carbon-degrading and nitrogen-degrading enzymes at the 
soil level in response to zeolite applications. Our findings provide a com
pelling proof-of-concept for the beneficial effects of foliar-applied zeolite 
as a biostimulant for crops, emphasizing the critical need for additional 
field research to validate our greenhouse results.
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Introduction

Meeting the demands of a rapidly expanding world population and minimizing the environmen
tal consequences of agronomic practices pose significant challenges for modern agriculture (Clark 
and Tilman 2017; Lynch et al. 2021). Plant biostimulants (PBs) have been identified as important 
components in promoting sustainable agriculture (Cataldo et al. 2021). Indeed, PBs are defined as 
substances, mixtures or microorganisms that are capable of enhancing nutrient use efficiency, abi
otic stress tolerance and/or crop traits (Rouphael and Colla 2020; Del Buono 2021; Du Jardin 
2015) and can be classified into six categories, that is, humic and fulvic acids, protein 
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hydrolysates, seaweed and other plant extracts, chitosan, beneficial fungi and bacteria, as well as 
inorganic compounds (Du Jardin 2015; Yakhin et al. 2016).

While the mode of actions of different PBs are yet to be fully understood (Yakhin et al. 2017), 
recent application of plant phenomics combined with metabolomics seems promising to elucidate 
how different PBs can promote plant growth (Nephali et al. 2020; Li et al. 2022; Zhang et al. 
2023). PBs action should translate into economic and environmental advantages such as higher 
crop yield, increased crop quality, reduced fertilization rate, and/or higher stress tolerance. Recent 
meta-analyses have shown that PBs can enhance crop yield (Li, van Gerrewey, and Geelen 2022) 
and nutrient use efficiency (Herrmann et al. 2022) depending on type of biostimulant, application 
mode, crop species and environmental conditions.

The PBs category of inorganic compounds includes essential elements or inorganic salts such 
as, for example, silicates, phosphites, and carbonates. Siliceous natural nanomaterials such as zeo
lites can potentially be included in this category of inorganic PBs (Constantinescu-Aruxandei 
et al. 2020; Mondal et al. 2021). Natural zeolites are nanoporous, crystalline, hydrated aluminosili
cates of alkali and alkaline earth cations that are characterized by reversible dehydration, large 
volume of free space, and high cation exchange capacity (Mumpton 1999). When applied as soil 
amendment, recent studies have shown that natural zeolites can affect soil microbial structure 
(Ferretti et al. 2018), reduce nitrogen losses (Ruser and Schulz 2015; Faccini et al. 2018; Akbari 
et al. 2021; Roumani and Olfs 2021) and increase plant nutrient use efficiency (de Campos 
Bernardi et al. 2016; Mehrab et al. 2016; Medoro et al. 2022). Interestingly, zeolite addition to 
agricultural soils has been linked to changes in extracellular enzyme activities so suggesting that 
zeolite can also affect microbial activity and, ultimately, nutrient cycling (Garau et al. 2007; 
Gondek et al. 2023; Khati et al. 2017; Tzanakakis et al. 2021). However, studies that test natural 
zeolites as PBs for plant nutrition via foliar application are limited (e.g. El-Gabiery and Ata Allah 
2017; Moale et al. 2021; Petoumenou 2023; Sirbu et al. 2023) and, to our knowledge, no study 
has yet examined the effects of zeolite on crop nutrition (but see Sedaghat et al. 2022 as a strategy 
against drought in wheat plants).

In order to understand the potentials of zeolites as biostimulant for crops, a greenhouse 
experiment has been performed where maize and spring wheat plants were treated with a natural 
zeolite via foliar application in combination with three levels of nitrogen (N) fertilization, that is, 
100%, 75% and 50% of the recommended optimal dose. The tested zeolite as biostimulant 
(FertirocVR ) is a combination of natural zeolite (chabazite) and natural soft calcium carbonate. 
Our study aims to show the potential of zeolites as biostimulants in crop production by improv
ing nutrient use and soil enzyme activity. Specifically, we want to answer the following questions: 
(1) how does foliar-applied zeolite affect aboveground and belowground biomass as well as the
corresponding N uptake in maize and wheat plants? (2) Does soil activity of carbon, phosphorus,
and N-degrading enzymes respond to foliar application of zeolite? The overarching hypothesis of
this study is that, under reduced levels of N fertilization, the application of zeolite can not only
improve the N nutrition of the two crops, but also stimulate the activity of soil N-degrading
enzymes.

Material and methods

Experimental setup

A greenhouse experiment was conducted at the research station of the Swiss Institute for 
Agricultural Research (Agroscope) in Changins, Switzerland (46�240 N, 06�140 E), from April to 
June 2021. Spring wheat (Triticum aestivum L. cv. Diavel) and maize (Zea mays L. cv. LG31211) 
plants were grown in two distinct greenhouse modules under the same conditions, that is, a light/ 
dark regime of 14/10 h with supplemental lighting of 400 W m−2 at 22/15 �C and relative 
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humidity of 50%. Wheat and maize plants were grown in plastic pots of, respectively, 20 cm 
(diameter) � 15 cm (height) and 20 cm (diameter) � 25 cm (height) containing 3 kg of soil for 
the wheat and 6 kg of soil for the maize plants. All pots within each greenhouse module were 
placed on tables and randomly reshuffled every week to avoid any potential effects of microcli-
matic gradients.

Five and three seeds of, respectively, wheat and maize were sown in each pot. After seed emer-
gence, maize plants were thinned to one plant per pot whereas five plants of wheat were left in 
each pot. All the pots contained a loamy (338 g kg−1 sand, 425 g kg−1 silt and 237 g kg−1 clay) 
soil that was manually collected from the surface layer (0–15 cm) of an agricultural soil classified 
as Calcaric Cambisol and situated close to the greenhouse. Before potting, the soil was air-dried, 
ground, sieved through a 1-cm mesh and mixed thoroughly. The initial soil physico-chemical 
properties were as follow: pH (1:2.5, H2O) of 7.9, total N content of 1.21 g kg−1, total organic C 
content of 13.3 g kg−1, available P content of 0.14 g kg−1, and available K content 0.29 g kg−1. All 
plants received deionized water two or three times per week so to keep soil moisture content at 
60-80% of field capacity throughout the experimental period. Both crop species were allowed to 
grow for nine weeks. All pots received a basal fertilization treatment consisting of P (as KH2PO4) 
and K (as KCl).

Nitrogen and zeolite treatments

Pots were arranged in a replicated and completely randomized design. Nitrogen fertilization was 
applied at three different rates (¼ treatments), that is, the amount of 110 and 120 kg N ha−1 for 
maize and wheat, respectively, in accordance with the official recommendations for optimal N 
fertilization (Sinaj and Richner 2017), and two lower amounts of 60 kg N ha−1 and 90 kg N ha−1 

for both crops. Nitrogen was applied as ammonium nitrate in two dates for maize, that is, at V4 
(4 leaf collars present) and V6 (six leaf collars present) growth stage, and in three dates for wheat, 
that is, at Zadok’s growth scale of 16 (six unfolded leaves), 18 (eight unfolded leaves) and 19 
(nine unfolded leaves) (Zadoks et al. 1974). In the case of maize, each of the two dates of N fertil-
ization provided half of the total optimal N dose. Similarly, in the case of wheat fertilization, each 
of the three dates of N addition provided one-third of the total optimal N dose. The three N fer-
tilization treatments (hereafter N120/N110, N60, and N90 kg ha−1) were coupled with (þZ) or 
without (0Z) foliar application of zeolite. Thereby, the overall experiment design resulted in six 
treatments, that is, 3 N levels � 2 zeolite levels. More specifically, the maize experiment consisted 
of 24 experimental units (each pot containing one plant was one experimental unit). For each N 
treatment (i.e. 110, 90 and 60 kg ha−1), maize plants received two levels of foliar zeolite (addition 
and no-addition, see below for the specific amount) with four replicates for each treatment. For 
the wheat experiment, each experimental unit was represented by a pot containing five plants. 
The N levels and the zeolite levels followed the same protocol as for the maize so yielding to 24 
experimental units. All the treatments with the foliar zeolite were sprayed on the same days when 
the N fertilization was applied (30, 36, and 42 days after sowing for the wheat, and 36 and 51 days 
after sowing for the maize). The commercial product FertirocVR was used as natural zeolite and 
was sprayed over the plants with a pressurized portable sprayer of 1 L. The FertirocVR product is a 
composition of natural zeolite (chabazite) mixed with a proportion of natural soft calcium car-
bonate. To be effective, the composition is micronized and works extremely fine according to the 
know-how of the producer company Power the Nature SA (Lausanne, Switzerland and P a r i s ,  
F r a n c e ). For wheat, the proper amount of Fertiroc was prepared based on the sur-face that was 
covered by 12 pots (i.e. 1.2 m2) following the manufacturer’s recommendations of 10 L of 
Fertiroc# ha−1 in 600 l of water. This resulted in the application of a solution of 72 mL of water 
containing 1.2 mL of Fertiroc#. For the maize, the proper amount of zeolite for 24 pots was 
prepared with the equivalent of 15 L of Fertiroc# ha−1 in 600 L resulting in a solution of 
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72 ml of water containing 1.8 mL of Fertiroc#. The controls of the zeolite treatment (0Z) were 
sprayed with the same amount of deionized water on the same dates of foliar applications of 
FertirocVR .

Sampling and laboratory analyses of plant and soil samples

Wheat and maize plants were sampled after 9 weeks from the sowing in order to recover the 
aboveground and belowground biomass (roots). The wheat plants were sampled at the dough 
development stages (growth stage 85), that is, when spikes were already emerged and the shoots, 
including the flag leaves, were yellow (Zadoks et al. 1974). On the other hand, maize plants were 
sampled at the tasseling stage. For wheat, all the five plants in each pot were sampled together 
and then separated into roots, aboveground biomass and spike biomass. Maize plants, one per 
pot, were separated into aboveground (tassels were included) biomass and roots. Aboveground 
biomass was cut at the soil level and roots were gently washed by hand over a sieve using tap 
water to remove soil particles. All the separated parts were oven dried at 60 �C for 72 h.

After drying, the roots, the aboveground biomass and the spike biomass samples were ground 
with a rotor mill to a fine powder (<2 mm). Total N content (%) was determined by Dumas dry 
combustion. The N uptake in the aboveground as well as in the belowground biomass was calcu
lated as: [N concentration (%) � dry weight (g plant−1)]. Upon harvest, composite soil samples 
made of three soil cores (2.5 cm diameter � 10 cm depth) per pot were collected and thoroughly 
mixed. Fresh subsamples were immediately frozen at −20 �C for soil enzyme analysis.

Soil extracellular enzymatic activity

The activities of five selected soil enzymes related to C-cycling, i.e. b-glucosidase (BG), b-xylosi
dase (BX), to C and N-cycling, that is, b-N-acetylglucosaminidase (NAG), to N-cycling, that is, 
leucine aminopeptidase (LAP), and to P-cycling, that is, acid phosphatase (AP), were measured 
using synthetic fluorogenic substrates according to a modified procedure by (Marx et al. 2001; 
German et al. 2011). Fluorogenic 4-methylumbelliferone (MUF)-based substrate was used to 
determine the activities of BG, BX, NAG and AP (Sigma-Aldrich, St. Louis, MO). Fluorogenic 7- 
amino-4-methylcoumarin (MUC)-based substrate was used to determine the activity of LAP 
(Sigma–Aldrich, St. Louis, MO). The fluorescence was measured by a microplate reader (BioTek, 
Instruments, US) with excitation wavelength of 355 nm and emission wavelength of 460 nm. For 
calibration and quenching effects, a set of standards were prepared with 200 lL of soil slurry solu
tion (for each individual sample) with a range of increasing concentrations of MUF or MUC 
standards. Enzyme activities were calculated from the regression slopes of the standard measure
ments along with the fluorescence average values of the triplicates for each sample and they were 
reported as mmol substrate (MUF or MUC) g−1 dry soil h−1.

Statistical analyses

Univariate and multivariate statistical analyses were performed using the software Statistica v. 
13.5.1.17 (TIBCO Software). The experimental design had two factors, that is, N fertilization 
(three levels) and zeolite biostimulant (two levels). For all studied variables, a two-way analysis of 
variance (ANOVA) was used to test the effects of N fertilization, zeolite and their interaction. A 
significant interaction indicates that the effect of zeolite depends on the level of N fertilization. 
Within each level of N fertilization, the effect of zeolite application was tested by means of a t- 
Student test. Finally, a principal component analysis (PCA) was applied to determine the correla
tions and explore the variability between plant and soil parameters.
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Results

Effect of N fertilization and FertiRoc addition on aboveground biomass

In maize plants, on the basis of two-way ANOVA, a positive effect of N fertilization on above-
ground biomass and the correspondent N concentration was observed (Figure 1A, B). Instead, 
the zeolite addition did not have any effect either on aboveground biomass or correspondent N 
concentration, with the only exception of the lowest N fertilization treatment (N60) where the 
application of zeolite significantly increased the N concentration in aboveground biomass (c. 
þ13%) compared to the no-zeolite treatment (Figure 1B).

In wheat plants, neither N fertilization nor zeolite application had a significant impact on 
aboveground biomass (Figure 2A). Differently, N fertilization positively affected the N 

Figure 1. Mean (n¼ 4) aboveground biomass (a), aboveground biomass N concentration (B), belowground biomass (C), and 
belowground biomass N concentration (D) in maize plants under different N (N60, N90, and N110kg ha−1) and zeolite 
(0Z¼ control, þZ¼ addition) treatments. Error bars represent standard deviation. The significant factors (N and Z) and their 
interaction (ZxN) from the two-way ANOVA are indicated (�p <.10; ��p <.05; ���p <.01) in relation to N and zeolite treatment. 
Superscript letters indicate significant differences (p< 0.085) between zeolite treatments for the same rate of N fertilization 
based on t-Student test.
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Figure 2. Mean (n¼ 4) aboveground biomass (a), aboveground biomass N concentration (B), spike biomass (C), N concentration 
in spike biomass (D), root biomass (E), and belowground biomass N concentration (F) in wheat plants under different nitrogen 
(N60, N90, and N120kg ha−1) and zeolite (0Z¼ control, þZ¼ addition) treatments. Error bars represent standard deviation. The 
significant factors (N and Z) and their interaction (ZxN) of the two-way ANOVA are indicated (�p< 0.10; ��p< 0.05; ���p< 0.01) 
in relation to nitrogen and zeolite treatment. Superscript letters indicate significant differences (p< 0.040) between zeolite treat
ments for the same rate of N fertilization based on t-Student test.
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concentration in aboveground biomass (Figure 2B). Zeolite application did not affect the N con
centration in aboveground biomass of wheat, but it did lead to a significant increase (c. þ19%) in 
N concentration at the lowest N fertilization level compared to the no-zeolite treatment (Figure 
2B). Regarding the spike biomass and N concentration in spikes (Figure 2C, D), N fertilization 
had a significant effect, while zeolite application did not. Nevertheless, there was a trend toward 
higher mean values of spike biomass with zeolite addition along the N gradient (Figure 2C).

Figure 3. Mean (n¼ 4) ratio of aboveground to belowground N uptake in maize plants (A) and in wheat plants (B) under differ
ent N (N60, N90, and N110/120kg ha−1) and zeolite (0Z¼ control, þZ¼ addition) treatments. In the case of wheat, the above
ground biomass includes the aerial biomass and the spike biomass. Error bars represent the standard deviation. Superscript 
letters indicate significant differences (p< 0.05) between N fertilization treatments for the same zeolite treatment (uppercase ¼
0Z, lowercase ¼ þZ) based on one-way ANOVA and post-hoc Fisher LSD test. The asterisks indicate a significant difference 
(p< 0.05) between zeolite treatments for the same N fertilization level based on t-Student test.
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Effect of N fertilization and FertiRoc addition on belowground biomass

For what concerns the belowground biomass of both crops, N fertilization did not have a signifi-
cant impact on root productivity. However, there was a tendency for root biomass to decrease at 
higher N fertilization rates, particularly in maize (Figures 1C and 2E). Conversely, the addition of 
Fertiroc resulted in a significant decrease of root biomass for both crop species (Figures 1C and 
2E) and an increase in root N concentration (Figures 1D and 2F) in all the N fertilization 
treatments.

Effect of FertiRoc addition on N uptake

The aboveground to belowground N uptake ratio was positively affected by Fertiroc addition 
for both crop species, particularly at lower N fertilization levels (Figure 3). Indeed, without 
zeolite application the plants receiving a higher N fertilization were characterized by a 
significantly higher aboveground to belowground N uptake ratio. However, with zeolite 
application no signifi-cative differences were observed in the N uptake ratio among the three 
N fertilization levels (Figure 3). Notably at the lowest N fertilization levels (N60 for maize 
and N60 and N90 for wheat), zeolite application resulted in a significant increase in the 
aboveground to belowground N uptake ratio compared to the corresponding control (Figure 3).

Effect of FertiRoc addition on soil enzyme activity

The foliar application of Fertiroc was associated with a significant change in the activity of 
soil enzymes in both maize and wheat soil. Specifically, the activity of b-glucosidase (BG) and 
leu-cine-aminopeptidase (LAP) increased more than double, whereas the activity of acid 
phosphatase (AP) and N-acetylglucosaminidase (NAG) decreased with the application of 
zeolite (Table 1). Furthermore, the activity of b-xylosidase (BX) increased in wheat soil, but 
decreased in maize soil upon zeolite application (Table 1).

Discussion

The observed higher aboveground biomass in response to N fertilization is in agreement with 
previous studies reporting a positive effect of increasing N availability for maize and wheat prod-
uctivity (Miao et al. 2006; Morris et al. 2018; Struck et al. 2019; Ordonez et al. 2020). 

Table 1. Effect of nitrogen (N) fertilization and zeolite (Z) addition on mean activity of C, N, and P-targeting enzymes in maize 
and wheat soil.

Soil
Enzyme activity  

(mmol MUF or MUC g−1 soil h−1)

Zeolite treatment Statistical analysis

0Z þZ Z effect N effect ZxN interaction

Maize Acid phosphatase (AP) 10.7a 6.6b ��� NS NS
b-glucosidase (BG) 39.4b 73.3a ��� NS NS
b-xylosidase (BX) 10.2a 4.4b ��� NS NS
N-acetylglucosaminidase (NAG) 9.3a 3.9b ��� NS NS
Leucine-aminopeptidase (LAP) 19.2b 34.3a ��� NS NS

Wheat Acid phosphatase (AP) 18.9a 9.9b ��� �� NS
b-glucosidase (BG) 30.2b 93.7a ��� ��� ���

b-xylosidase (BX) 6.9b 21.3a ��� NS NS
N-acetylglucosaminidase (NAG) 8.7a 5.5b �� ��� NS
Leucine aminopeptidase (LAP) 17.1b 36.8a ��� NS NS

Note: Values are the average (n¼ 12) across three N fertilization rates for the two zeolite treatments. The 0Z treatment indi
cates no-zeolite addition (control), whereasþ Z indicates zeolite addition according to manufacturing indications. The statis
tical analysis, based on a two-way NOVA, shows the significance of zeolite and nitrogen effect as well as their interaction: 
NS¼ no-significant (p> 0.10), � ¼ p� 0.10, �� ¼ p� 0.05, ��� ¼ p< 0.01. For each enzyme, the significance of the Fisher- 
LSD post-doc comparison between zeolite treatments is indicated by different small case letters (p� 0.05).
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Figure 4. PCA ordination of maize (A) and wheat (B) samples on the basis of soil enzymatic activity of acid phosphatase (AP), b-
glucosidase (BG), b-xylosidase (BX), N-acetylglucosaminidase (NAG), and leucine aminopeptidase (LAP) as well as on the basis of 
aboveground to belowground N uptake ratio and root weight under zeolite addition (þZ) and no-zeolite addition (0Z). The three 
N fertilization rates are represented by the increasing size of the circles (120/110 kg N ha−1 ¼ biggest size, 60 kg N ha−1 ¼ lowest 
size).

Interestingly, the application of Fertiroc in the lowest N fertilization treatment resulted in higher N 
concentration in aboveground biomass for both crop species, suggesting that Fertiroc may, directly 
or indirectly, enhance the N uptake under lower N availability.

Regarding the belowground productivity, previous studies have demonstrated that plants tend 
to allocate more dry matter to belowground biomass in order to acquire more nutrients when 
faced with lower N availability (Chen et al. 2015; Liu et al. 2017; Duncan et al. 2018; Ordonez 
et al. 2020; Kubar et al. 2022). This explains the observed increase in root biomass in response to 
decreasing N fertilization, a response particularly pronounced in maize. At the same time, the 
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observed decrease of root biomass with Fertiroc application may, indeed, reflect an increase of N 
availability, so resulting in less investment in root growth (Figures 1D and 2F). Despite the 
decrease in root biomass, the data indicate that Fertiroc application was associated with an improve-
ment of the efficiency of N uptake, particularly under lower N fertilization where a higher N con-
centration in aboveground biomass was detected with Fertiroc application (Figures 1B and 2B).

The foliar application of Fertiroc led to a stabilization of the N uptake ratio across all the levels 
of N fertilization, particularly at low N fertilization rates (Figure 3). This effect was observed in 
both studied crops and was not evident in the absence of Fertiroc application. The direct and 
indirect mechanisms of zeolite for promoting a better N uptake at lower N fertilization level are 
still unclear and further studies are necessary. We can speculate that zeolite can either directly 
affect N metabolism of the plant (Li et al. 2022; Savarese et al. 2022) or indirectly through plant- 
soil microbial interactions (Pantigoso et al. 2022; Costa et al. 2023). For our study, we hypothe-
size that a role in the improvement of N uptake is also played by a change in soil enzyme activity 
with Fertiroc application (Table 1). Specifically, higher activities of both b-glucosidase (BG) and 
leucine-aminopeptidase (LAP) were associated to higher aboveground to belowground N ratio 
and lower root biomass in both crops (Figure 4). The increased LAP activity indicates an increase 
in amino acid degradation and, consequently, more N available to the crops (Siwik-Ziomek and 
Szczepanek 2019; Greenfield et al. 2021). In parallel, the increase in BG activity may reflect a 
change in root exudate quality and quantity so to promote soil microbial activity (Sanaullah et al. 
2016) and accelerate soil N cycling (Henneron et al. 2020). The observed decrease in NAG activ-
ity is consistent with previous findings on the response of this enzyme to increased N availability 
(Olander and Vitousek 2000) and to changes in root exudate composition (Hao et al. 2022). The 
decrease of AP activity may be attributed to an increased mobilization of inorganic phosphorus 
resulting from the release of organic acids by plant roots (Zhang et al. 2019). Taken together, we 
hypothesize that the observed changes in soil enzyme activities induced by the Fertiroc application 
may reflect a functional response of the soil microbiome to changes in crop root exudates 
(Sieradzki et al. 2023). This link between soil enzyme activity and soil microbiome composition 
has been already reported in response to the addition of other types of PBs (Khati et al. 2017; 
Barone et al. 2019; Mattarozzi et al. 2020; Trivedi et al. 2021).

In conclusion, this study demonstrates that foliar application of the Fertiroc® has 
significant effects at both plant and soil level. For both maize and wheat, Fertiroc 
addition reduced root bio-mass but increased root N concentration, especially at lower N 
fertilization rates. Remarkably, Fertiroc addition maintained a consistent aboveground 
to belowground N uptake ratio, even under reduced N input. At soil level, Fertiroc 
addition increased the activity of b-glucosidase and leucine- aminopeptidase enzymes 
potentially leading to increased N availability. This research provides a proof-of-
concept for the potential benefits of foliar application of zeolite as biostimulant for 
crops. However, the complexity of the effects merits further in-depth investigation to fully 
eluci-date the underlying mechanisms. This is particularly important if foliar application of 
zeolite can be combined with strategies aiming at reducing N fertilization levels while 
maintaining crop yield quality and quantity.
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